

Gaming platform that provides support

for game data management and server

side logic

sales.sugarspace@gmail.com

2

Content

GENERAL ... 4

What is the platform itself 4

Platform capabilities ... 4

Tech stack .. 4

Backend + Dashboard .. 4

Client ... 4

WORKING WITH THE PLATFORM ... 5

Working with the server ... 5

Working with the Dashboard .. 6

Common operations .. 9

Normal templates ... 9

Shared templates .. 16

Game accounts ... 17

Working on the client side 19

How to start .. 19

Content generation .. 19

User deletion ... 20

Façade creation ... 20

Connecting to the server .. 22

Working with requests ... 23

Closing a connection .. 25

SERVER DEPLOYMENT .. 26

Key generation on the client 26

Setting up ssh on the host 26

Installing dependencies for working with the meta 29

Setting up mongo and its security 30

Setting up ufw ... 31

Meta service configuration 32

Useful meta commands ... 34

FRONTEND DEPLOYEMENT ... 35

SERVER API ... 38

System login ... 38

Sending an event ... 39

Getting logs ... 40

Creating a content entity .. 41

Deleting a content entity .. 42

Updating a content entity .. 43

Getting a content entity ... 44

Getting content entities ... 45

Create a template .. 46

Delete a template .. 47

Update a template .. 48

Getting a template ... 49

sales.sugarspace@gmail.com

3

Getting templates .. 50

Game authentication .. 51

Getting game content ... 52

Refresh content cache .. 53

Server events .. 54

Getting the content schema 55

Getting player template .. 56

Update player template ... 57

Getting player model ... 58

Update player model .. 59

Deleting a player model by specifying a player id 60

Deleting a player model by specifying device id 61

COMPARISON WITH COMPETITORS .. 62

Back4App ... 62

GameSparks ... 62

Playfab .. 63

ChilliConnect .. 63

GameLift ... 63

SteamWorks ... 63

Our unique pros .. 63

Why choose SugarSpace .. 64

sales.sugarspace@gmail.com

4

GENERAL

What is the platform itself

SugarSpace is a gaming platform that provides support for managing game

data and implementing server-side game logic. In fact, this is a three-

component game support system: code generation on the client, custom

logic on the server, and a game content management dashboard.

Platform capabilities

Initially, the platform was conceived as a remote game configuration

management service, but over time, the platform has been expanded and

now, in addition to working with game content, it supports game ac-

counts, provides a flexible system of game events, supports authori-

zation with tokens and automatic state synchronization of game models

between server and client.

In general, the platform has everything you need to implement meta-

part of the game.

Tech stack

Backend + Dashboard

The backend for the system uses MERN web technology stack: MongoDB as

a base for storing content and game accounts, Express.js as a means of

client and server interaction through requests and events, React.js as

a library for building UI for a dashboard, and Node.js as execution

environment for authoritative code. There is javascript in use.

Client

The client part is a wrapper over the functions for generating strongly

typed content storage classes, user structures, as well as structures

for automatic synchronization of client and server models. There is C#

in use.

sales.sugarspace@gmail.com

5

WORKING WITH THE PLATFORM

Working with the server

The server allows you to execute custom scripts in response to requests

from game clients. Custom scripts should be in the customLogic direc-

tory. Here is an example script:

user – the user on whose behalf the script is being executed. For

security purposes, scripts can only work and change the data of the

user on behalf of whom they are running.

content – game settings. Content is a collection of entities that are

addressed by unique keys.

events – event module. Allows you to send events to clients by their

unique id.

custom_parameters – any parameters that the client will send.

Scripts can do the following:

- change user model. You can change the model using any methods avail-

able in js. For example, you can add an element to a collection or

remove that element from it. After the end of the script, the user is

automatically saved in the database, and information about the changes

to the user's model is sent to the client, which merges it with its

local model. Here is an example of how the user model can be updated:

- return a result of any work. The result of the work is returned to

the client through the return keyword. Here is an example:

sales.sugarspace@gmail.com

6

- throw an exception. Sometimes it is useful to point out to the client

that there is an error in the data or that an operation cannot be

performed. It can be done like this:

- send an event. If necessary, the script can send events to clients.

Events can be sent not only to the client on whose behalf the script

is running, but also to other online clients. To send an event, you

need to do this:

- query game collection data. Game data (monster power, reward for

victory) is stored as collections. Access to the first element of the

collection is possible through the keyword first. It is very handy when

working with settings represented by a single entity.

Here is an example of accessing game content from the script’s body:

Working with the Dashboard

The dashboard is the heart of the platform. It provides game data

management. In order for the administrator to gain access to the dash-

board, you need to enter admins data in admins.json. The login is

sales.sugarspace@gmail.com

7

specified in the username field and the password’s hash is hashedPass-

word. Hashing uses bcrypt. To verify the hash, you can use

https://bcrypt-generator.com/

Here is an example of admins.json file:

The dashboard has two built-in themes: white and dark. You can switch

between them by clicking the button in the form of a sun next to the

name of the platform.

sales.sugarspace@gmail.com

8

Here are two themes we have got:

The work of the dashboard is divided into sections for convenience.

sales.sugarspace@gmail.com

9

During the operation of the dashboard, situations arise that need to

be reported to the user. Notifications are used for this. They look

like this:

Common operations

Import – you can restore all game templates from a file.

Export – You can download and save all game templates.

Logs – you can get the log file of the server.

Events – having a user ID, you can send him a message.

Update the content – updates the content cache. In order to optimize

the content of the server it is not downloaded from the database for

each request, but comes from the cache. Accordingly, if changes have

been made, the cache needs to be updated.

Logout - when you are finished working with the dashboard, you can

close the session by clicking on logout.

Normal templates

This section creates templates for content entities. A template is a

blueprint according to which real entities will be created. The tem-

plate has certain structure. For example, a game ability template might

contain fields such as the duration of the ability and its damage.

sales.sugarspace@gmail.com

10

Template creation

To create a template, you need to click on the Create button in the

upper right corner of the section.

When you create a template, you must specify its name, type, and schema.

The template name must be unique. It cannot be changed after creation.

It is best to use capitalized English words for template names. The

template type can be specified as normal (the Shared checkbox is un-

checked) and shared (the Shared checkbox is checked).

Normal templates have differences from shared. Entities can only be

created based on normal templates. Only shared templates can be used

as sub templates for normal and shared templates. In short: most often

create normal templates. Shared are needed where it is necessary to

use some templates in others. The template has certain structure. The

schema of a template defines its essence.

sales.sugarspace@gmail.com

11

Here is an example of a possible ability template schema:

Template structure formation rules:

- the template scheme is set according to the json formation rules.

- the root element of any template is always an object named root. You

cannot create a template whose root is an array.

- root elements are strongly typed.

- in a schema, the key defines the name of the element, and the value

defines its type.

sales.sugarspace@gmail.com

12

Template example:

sales.sugarspace@gmail.com

13

Data types

Primitive types

int – integer.

long – big integer.

float – floating point number.

string – string in utf8 format.

enum – enumeration, as the type you need to specify the name of an

array with all possible enumeration values.

text – the same as string, only the input field is multiline.

link – a reference to an entity in another collection. The same as

string, only a field in the form of a list of entities from the

specified collection.

Custom types

shared – shared type. The description of the shared type must be an

object (json). The description of the shared type must be given as a

shared template with the specified name. Used to form common data types

for different templates.

custom – custom type. The description of the custom type must be an

object (json). The description of the custom type must be given within

the template being created. Used to form complex custom data struc-

tures.

map – map. The key can only be int, float, string. The value can only

be int, float, string, custom.

array – array. The element can only be int, float, string, custom.

branch – It is used when within the same collection it is necessary to

store content of different structure. For example, in a weapon collec-

tion, each weapon must have a price, but an assault rifle must also

have a rate of fire, but a knife does not. As a type in the schema, an

object (json) must be specified, each element of which represents a

custom object of a possible branch structure.

Template editing

Once created, the template can be edited. To do this, you need to find

the desired one in the list of templates and click on the button with

a pencil image on it.

sales.sugarspace@gmail.com

14

Template deletion

To delete a template, you need to find it in the list of templates and

click on the trash can button. After confirming the selection, the

template will be deleted.

Entities export

To export template entities, you need to find the template of interest

in the list of templates and click the arrow button.

sales.sugarspace@gmail.com

15

Template’s entities

After creating a template, functions for working with its entities are

available (this is not possible for shared templates).

To see what entities a template has, you need to find it in the list

and click on the button with an eye image on it. This will open the

entity selection page.

IMPORTANT: if the template has title element with type string, its

entities will use the value of this element to display in the list

of entities.

Entities creation

To create an entity, you need to click on the Create button. This will

open the entity creation page.

Entities editing

To edit an entity, you need to find the required entity in the list

and click on the button with a pencil image on it. This will open the

Edit Entity page.

sales.sugarspace@gmail.com

16

Entities deletion

To delete entities, you need to find one in the list of template

entities and click on the trash can button. After confirming the se-

lection, the entity will be deleted.

Shared templates

Working with this section is similar to the section of normal tem-

plates. The difference is that shared templates are grouped in this

section.

sales.sugarspace@gmail.com

17

Game accounts

This section is required to work with player accounts.

Editing the user structure

The user is also a template. It, like any other template, can be edited

to set the desired user structure. Clicking on the edit initial user

schema button will open the player template.

IMPORTANT: in the structure of any user, the presence of the deviceId

and clientVersion element is mandatory.

Editing the default user

The first time the client connects to the server, the server creates

a new user. It is often necessary to set specific values for user

fields other than the default ones. To do this, you need to edit the

initial user data. To do this, you need to click on edit initial user

data the button in the current section.

sales.sugarspace@gmail.com

18

Editing a game user

Sometimes it is required to correct the data of a particular user. To

do this, you need to enter its unique id in the text field and click

on the Search button. If there is such a user, the edit user page will

open. If not, a corresponding notification will appear.

Deleting a game user

Sometimes you need to delete a specific user. To do this, you need to

open the page for editing it and click on the button with the trash

can. After confirmation, the user will be deleted.

User Import/Export

It is often convenient to save a user model so that you can return to

it later and restore it. This can be done using the import/export

buttons on the user interface page.

sales.sugarspace@gmail.com

19

Working on the client side

How to start

The first thing to do is to import the unity package into the client.

After that, the SugarSpace folder will appear in the project - the root

folder of the platform integration.

Then you need to create a settings object. This can be done through

the menu: Assets -> Create -> ScriptableObjects -> NetworkSettings.

The inspector window for this object looks like this:

Address – server address. Format example: http://000.000.000.000:0000.

Username – dashboard username.

Password – dashboard user password.

ContentPath – relative path to the folder for content generation.

ContentSpace – namespace for generated content.

ContentRoot – class name for content collection.

Content generation

To start generating content according to the schemes specified in the

dashboard, you need to execute the following menu item: SugarSpace ->

Generate Content.

During the generation process, data collection classes will be created,

as well as the structures required to synchronize these models between

the server and the client.

sales.sugarspace@gmail.com

20

An example of a generated data collection class:

User deletion

For convenience, you can also delete a user directly from the editor.

To do this, execute the following menu item: SugarSpace -> Remove User.

Façade creation

All work with the system is done through the facade - the central

integration node.

sales.sugarspace@gmail.com

21

Here is the Facade object example:

Template parameters:

Proxy – generated proxy class.

User – generated user class.

Diff – generated patch class.

Content – generated content collection class.

Constructor parameters:

serverAddress – server address.

timeout – server response timeout.

proxyFactory – delegate to create a proxy object.

patchFactory – delegate to update the proxy object with a patch.

IMPORTANT: nothing needs to be changed here, except to substitute

your own names of the generated classes.

sales.sugarspace@gmail.com

22

Connecting to the server

After creating the facade, you need to log in to the server as a client

and download the content. You can do it like this:

To subscribe to events from the server, you need to do this:

You can get content like this:

sales.sugarspace@gmail.com

23

You can get the current state of the model like this:

You can subscribe to model changes like this:

When the contents of the collection change, such as when an element is

added or removed, On[collection_name]Changed is called. When only a

collection item is updated, On[collection_name]Updated is called.

Working with requests

Request creation

Each request is implemented by inheriting of the platform class. Here

is an example request:

As the api parameter of the base class, you must specify the name of

the server script in the format api/[script_name].

sales.sugarspace@gmail.com

24

Here is an example of a simple request that sends name parameter to

the server.

Request sending

The request is sent through the facade. Here is an example:

Response receiving

When sending a request, it is possible to specify the class of the

response to it by setting the template parameter of the Network-

Facade.Request<T>() method. If the server handler does not send any-

thing back to the client, the template parameter must be object.

sales.sugarspace@gmail.com

25

An example of a request with a specific response from the server:

Notice the response class attributes.

Closing a connection

At the end of the work, you need to release the resources:

sales.sugarspace@gmail.com

26

SERVER DEPLOYMENT

This guide will outline the order of the initial deployment of the

meta on the host. As an example, the whole process will be outlined

from beginning to the end with the necessary settings to improve se-

curity and installation of all necessary system components. Setting

up CI for the meta is beyond the scope of this guide, as there are a

huge number of CI solutions, each with its own documentation. We are

using a server running Ubuntu 20.04 (LTS) as an example.

Key generation on the client

The first thing to do is to organize access to the host via ssh for a

specific user. To do this, you need to generate a pair of keys. To

generate keys, we recommend using git bash as a linux console emulator

on windows and the ssh-keygen command. The command is executed with

the -t flag, which specifies the desired type of key encryption. In

this case it is RSA.

When generating a key pair, you can specify a password to access it to

increase security. After that, two files will appear in the directory

specified in the key generation process. The one without extension is

the private key and should be kept secret. The other one, which has a

.pub extension, is the public key that will be used to configure the

host to connect via ssh.

Setting up ssh on the host

Now you need to open a terminal on the host you want to access. Usually,

having physical access to the machine or root access to the cloud node

is sufficient. So, you need to open the terminal as root and start

executing commands in it. First of all, it is important to download

and install all updates so that you only deal with the latest, most

secure software. To update the system, you need to run the apt-get

update command.

After the update, the time of which depends on the speed of the Internet

connection and the power of the host, you can proceed with the initial

configuration of the host's security. First, we disable the ability to

log in to the root, as well as log in to any user by login and password.

sales.sugarspace@gmail.com

27

This will provide an additional layer of protection. Go to the /etc/ssh

directory and open the sshd_config file for editing.

In the file, you need to find the lines PasswordAuthentication, Per-

mitEmpty-Passwords and UsePAM, PermitRootLogin and put no in front of

them. Some of them can be commented out with # hash tag. In this case,

they should also be uncommented. We then resave the file and restart

the sshd daemon like this.

Now we will not be able to log in as root, as well as any user, even

if we know the login and password. Now you can only connect via ssh

using a key. If the key is lost, then you will need to physically have

access to the host in order to correct the situation.

IMPORTANT: all this must be done during one session, otherwise, when

we log out, we will fall into our own trap.

As an additional security measure, you can change the ssh port on which

the connection will be made. The standard port for ssh is 22, change

it to whatever you want and then simple ssh <user>@<host> will no

longer be enough to connect. It is also configured by analogy with the

root login and password. That is, open the /ect/ssh/sshd_config file

and find the Port line, opposite which is the working port. Don't

forget to save the file and restart the daemon. It will now be necessary

to connect like this ssh -p <port> <user>@<host>. For extra protection

in this file, you can also configure the range of ip addresses of

clients from which you can make an ssh connection, or even just one ip

address. For more information, see the documentation for the daemon

and its commands.

Now you should move on to creating a user who will "run" the meta code

as a service. In general, it is a good practice to always use a non-

root user for further work with the host. It's safer that way. The

adduser <user> command is used to create a new user. For example,

adduser demo.

After that, the system will prompt you to select a password for this

user, which will need to be duplicated for correction. Also, in the

process of creating a new user, a number of optional questions will be

asked, such as indicating the full name, room number, work phone. You

sales.sugarspace@gmail.com

28

might skip all these questions, pressing enter. The final phrase when

creating a user is the confirmation of all entered data.

Then the created user must be assigned the rights to execute various

commands. This is done by adding it to the sudo group with the usermod

command.

Again, <user> is your username, in our case demo. Then it is necessary

to give this user the understanding that the owner of the key can

connect to him via ssh. To do this, go to the user's home directory

with the command

and make sure it has a .ssh directory with an authorized_keys file.

You can check this with the ls command. If there is no such file or

folder, then it must be created by assigning secure read and write

permissions. This is done in the following way.

Now you need to open the authorized_keys file in any text editor and

enter the contents of the public key file, which has already been

generated by the client. We recommend using nano to work with text in

the terminal - it is simple, clean and convenient. To open a file, use

this command

After that, you need to open the public key file and copy all its

contents to the clipboard, go to the console on the server and paste

the contents into the authorized_keys file using the SHIFT+INSERT com-

bination. Then you need to execute CTRL + X to exit nano, and answer

Y when asked about saving.

sales.sugarspace@gmail.com

29

Tip: You can use git bash to copy the entire contents of the public

key file. This command copies the contents of the public key to the

clipboard.

Now the client can access the server and configure it, which is correct

and safe. To connect via ssh to the host, you need to open the console,

connect the key in git bash, and then connect via ssh. It is done in

this way.

After executing these commands, the terminal will connect to the spec-

ified user via ssh and will allow you to work with the server remotely.

Installing dependencies for working with the meta

Meta for its work requires a number of dependencies, among which there

are mongo and node. Our target configuration worked fine on mongo 3.6.8

and node 14.18.0 as well as npm 6.14.15, so we recommend installing

those versions or higher. Mongo and a package manager (npm) can be

installed the usual way, but a node requires more effort.

To install mongo, you can simply run the following command in the

terminal, which will require the password from the corresponding user.

It is also best to check its version right away to make sure everything

is done correctly. You can also immediately check that mongo has

started as a service and that everything is fine with it.

The last command will give a part of the log and service information

about the running service as a response. Among this information, it is

important to find the word active, which indicates the correct opera-

tion of the service.

Now you can set the node. Ubuntu distributions usually do not contain

the latest versions of the node, so we will install it from other

repositories. It is done like this.

sales.sugarspace@gmail.com

30

After completing all these steps, the node will be installed and, in

the console, you can see the version of the newly installed node. Now

you can go to the security settings.

Setting up mongo and its security

Mongo's base needs to be protected from a surprise attack. Therefore,

it is best to immediately create a user in it, through which it will

be possible to interact with its content. This will also allow you to

open access to the database from the outside for other software and,

if necessary, safely edit it manually. To work correctly, mongo must

have a previously created sugarspace database. This can be done by

opening mongo’s terminal and executing a few commands in it.

Now the database opens immediately, because the user has not yet been

created and the password has not been assigned to him, but later it

will be impossible to read data from it without a login and password.

First of all, we will make sure that we can create and use the sug-

arspace base.

After that, you can go to the admin database, where we will create our

database user.

sales.sugarspace@gmail.com

31

After that, the system will ask you for the user’s password and finish

setting up access to the database. Now there is a user with a password,

but the mongo daemon does not know that access should be restricted.

It's set up like this. First, let's open the mongo settings file.

You need to find auth in the file and set the field to true. In order

to organize access from other software directly to mongo in the future,

you need to configure bind_ip in the same file, adding the ip of your

host separated by commas. Thus, access to mongo can be organized from

the outside, and not just from the same host. After modifying the

settings file, you need to save it and restart the mongo daemon with

this command.

The second command is in addition to the first and provides an overview

of how the daemon has been restarted.

Setting up ufw

Now you need to configure the firewall in order to close everything

unnecessary and open only what will meta use. In essence, we only need

three ports - 22 for ssh access, 4000 for the node and 27017 for the

mongo in case we decide to organize access to it from the outside.

sales.sugarspace@gmail.com

32

Important: if ufw is configured incorrectly, it will block all con-

nections, including ssh, shutting down our host completely.

First of all, we prohibit all connections to the input. To do this, we

execute the following command.

Then add the ability to access via ssh

After that, add port 4000 to access the node for clients and admins

with this command

Finally, to open the port for mongo, we use this rule.

In the final, we simply activate ufw. It is done in this way.

Meta service configuration

Meta runs on the server as a service. This means that for it to work

successfully, you need to have the meta core code and correctly con-

figure the service config. Then you only need to start the service and

the meta will be ready to go.

You should start by copying the meta code to the host using scp. In

order for scp to work correctly, you need to load the ssh key into git

bash using eval. This is done in the same way as in the case of a

simple connection to the host via ssh. Then we execute the following

command on the client machine that has the meta code (not the host):

Executing this command will copy the entire meta code to the working

directory of the user specified as user in this case. Then it is

sales.sugarspace@gmail.com

33

important to go to the directory with the meta code and import the

dependencies using the npm ci command.

After that, you need to create a service config so that the process

will use when it starts. The process will read environment in which it

works. Service configs are stored in /etc/systemd/system. In this di-

rectory, you need to create a config file for our service, for example,

sugarbackend.service. And here is a template of what the contents of

this file should be.

This is a template that you can customize as needed. Let's go through

some of the properties that will need to be configured.

User – user that will be used for running the process.

ExecStart – node location and path to the entry point for the service.

WorkingDirectory – the location of the working directory for the pro-

cess.

Environment – a list of environment variables that the service uses

during its operation.

The file must be saved, and then reload the service configuration with

this command.

After completing all the above steps, the meta server should be up and

running!

sales.sugarspace@gmail.com

34

Useful meta commands

Start, stop and restart

Monitoring service logs directly on the host

sales.sugarspace@gmail.com

35

FRONTEND DEPLOYEMENT

The front itself represents an application written in React. It uses

client rendering and no server rendering. A feature of the front is

that it uses ReactRouter to implement addressing. This will require

certain exercises to properly launch the application as a service.

First of all, you need to access the host via ssh. Given that you must

first configure the back, and then the front, you already know how to

organize access via ssh, make it safe, and so on.

The next step is to copy the front distribution to the host. To do

this, as before, you need to use the scp command. We will assume that

the distribution kit is successfully copied to home directory of the

user, on whose behalf the service will be running. We will also use

build as the name of the front directory, and demo as the user.

After that, you need to wrap the distribution in a node application,

redefine routing in it, and run the node application as a service.

Create a sugarwrapper_deploy folder in the user's home directory. While

in it, you need to create an empty project. It's all done with this

command.

This will create all the necessary files for the wrapper in the user's

home directory. Then, the distribution kit of the front is transferred

to this wrapper with this command.

After that, you can start writing wrapper code. In the sugarwrapper_de-

ploy directory, you need to create an index.js file, and write the

following code in it.

sales.sugarspace@gmail.com

36

We save the file and move on to setting up dependencies and the service.

In the project console, we execute npm install express, and then we

start creating the service config. All the services are located in the

/etc/systemd/system directory. We go there and create a sugarwrap-

per.service file. Inside the file we write the following configuration

for the service.

Here it is important to check the paths where you have dependencies,

such as the project, distribution, and so on. If something is not

configured correctly, the front will not start as it should.

sales.sugarspace@gmail.com

37

After that, you need to restart the systemctl daemon and start the

service with this command.

sales.sugarspace@gmail.com

38

SERVER API

System login

Obtaining a system authorization token.

username – username

password – password

Request

Response

isOkay – response status

data.token – system token

sales.sugarspace@gmail.com

39

Sending an event

Sending an event to the client with custom content.

id – user identifier

message – event custom content

Request

Response

isOkay – response status

sales.sugarspace@gmail.com

40

Getting logs

Getting server logs.

Request

Response

sales.sugarspace@gmail.com

41

Creating a content entity

Creating a content entity of a specific template.

templateName – template name

entity – entity body

Request

Response

isOkay – response status

data – the body of the created entity

sales.sugarspace@gmail.com

42

Deleting a content entity

Removing the content entity of a specific template.

templateName – template name

id – entity identifier

Request

Response

isOkay – response status

data – removed entity identifier

sales.sugarspace@gmail.com

43

Updating a content entity

Update the content entity of a specific template.

templateName – template name

id – entity identifier

entity – entity body

Request

Response

isOkay – response staus

data – updated entity body

sales.sugarspace@gmail.com

44

Getting a content entity

Getting the content entity of a specific template.

templateName – template name

id – entity identifier

Request

Response

isOkay – response status

data – entity body

sales.sugarspace@gmail.com

45

Getting content entities

Getting content entities of a specific template.

templateName – template name

pageIndex – page index

pageSize – page size

Request

Response

isOkay – response status

data.entities – current content entities page

data.totalCount – the number of entities in the entire collection

sales.sugarspace@gmail.com

46

Create a template

Create a specific template.

name – template name

shared – template type (normal or shared)

schema – template schema

Request

Response

isOkay – response status

data – body of a created template

sales.sugarspace@gmail.com

47

Delete a template

Removing a specific template and all of its entities.

name – template name

Request

Response

isOkay – response status

data – name of a deleted template

sales.sugarspace@gmail.com

48

Update a template

Updating a specific template.

name – template name

shared – template type (normal or shared)

schema – template shema

Request

Response

isOkay – response status

data – updated template body

sales.sugarspace@gmail.com

49

Getting a template

Getting a specific template.

templateName – template name

Request

Response

isOkay – response status

data – template body

sales.sugarspace@gmail.com

50

Getting templates

Getting all the templates of a specific type.

pageIndex – page index

pageSize – page size

shared – templates type (normal or shared)

Request

Response

isOkay – response status

data.templates – page with templates

data.totalCount – total number of templates of a specific type

sales.sugarspace@gmail.com

51

Game authentication

Getting a game token and a player model.

deviceId – player device ID

Request

Response

isOkay – response status

data.user – player model

data.token – game token

sales.sugarspace@gmail.com

52

Getting game content

Getting game content.

Request

Response

isOkay – response status

data.content – game content

sales.sugarspace@gmail.com

53

Refresh content cache

Refresh content cache.

Request

Response

isOkay – response status

data.content – game content

sales.sugarspace@gmail.com

54

Server events

Server events subscription.

Request

Response

retry – number of milliseconds in case of reconnection

id – event unique identifier

data – custom message content

sales.sugarspace@gmail.com

55

Getting the content schema

Getting the content schema.

Request

Response

isOkay – response status

data.templates – content templates

data.userTemplate – player template

sales.sugarspace@gmail.com

56

Getting player template

Getting player template.

Request

Response

isOkay – response status

data – player template

sales.sugarspace@gmail.com

57

Update player template

Update player template.

schema – player template schema

Request

Response

isOkay – response status

data – update player template

sales.sugarspace@gmail.com

58

Getting player model

Getting player model.

id – player identifier

Request

Response

isOkay – response status

data – player model

sales.sugarspace@gmail.com

59

Update player model

Player model update. All the fields of the old model are destroyed.

There is no data merging.

id – player identifier

model – player model itself (body)

Request

Response

isOkay – response status

data – updated player model

sales.sugarspace@gmail.com

60

Deleting a player model by specifying a player id

Deleting a player model.

id – player identifier

Request

Response

isOkay – response status

data – deleted player identifier

sales.sugarspace@gmail.com

61

Deleting a player model by specifying device id

Deleting a player model.

deviceId – device identifier

Request

Response

isOkay – response status

data.userId – deleted player identifier

sales.sugarspace@gmail.com

62

COMPARISON WITH COMPETITORS

The comparison took into account aspects of the niche that SugarSpace

claims. The main characteristics are the management of content and

player data, as well as authoritative server logic.

There will be no such aspects as leaderboards, matchmaking, or A/B

testing tools in comparison. It is important to keep in mind that the

platform, although it does not provide such tools out of the box, is

built with extensibility in mind and does not prevent their integration

in any way.

Therefore, the comparison will be carried out in terms of managing

content and user data, evaluating the work of authoritative server

scripts.

Back4App

Cons:

- The documentation is client-oriented - all work with the server is

described according to the principle of implementing logic on the

client, and the server is just a safe storage.

- Weak security - by default, everything is available and open to any

user. This is great at the development stage, but in production it can

become a problem.

- Built on the basis of an open source product, which makes regular

updates impossible, and the server itself more vulnerable.

- Product support is officially discontinued.

- The service is distributed on a subscription basis.

Pros:

- There is support for the GraphQL Request language.

- The ability to save data in Blockchain.

- Automatic increase in power under load.

GameSparks

Cons:

- Fixed user model, it is impossible to add fields.

- Very weak work with content: you can install data and delete them.

That’s it.

- Only two data types are supported: strings and numbers.

- On the client there is no strict typing.

Pros:

- Developed system of rights for dashboard operators.

- Automatic increase in power under load.

- Support for analytics out of the box.

sales.sugarspace@gmail.com

63

Playfab

Cons:

- Strict restrictions on the number of Requests and on the amount of

data of both the content and the user.

- User data is split into player data and game data.

- Content is one collection of key and value pairs.

- No strong typing.

Pros:

- Users from different games are connected to one central account.

ChilliConnect

Cons:

- The most expensive subscription of all.

Pros:

- It is possible to write scripts directly in the dashboard.

- It is possible to create scripts that are activated by time.

- Strong content system. It is possible to write types through the

schema.

GameLift

Cons:

- No work with content, only realtime.

Pros:

- Convenient when working in a group with other services from Amazon.

SteamWorks

Cons:

- Focused on the Steam distribution platform.

- The content system is limited by the ability to store user files.

Pros:

- It is possible to integrate only the necessary services.

Our unique pros

- The most mature and advanced system for working with content and

data:

- Convenient work with content for designers.

- Validation of content data and user models.

- Implementation of custom types directly in the dashboard.

- Common user and content data types.

- Generation of typed content classes and user model:

- Simplification of work with data on the client.

- No need to write routine code.

- Automatic synchronization of server and client models:

- Client model update code is generated automatically.

- Acceleration of development and elimination of synchronization

errors.

sales.sugarspace@gmail.com

64

- Server oriented implementation of authoritative logic:

- Automatic formation of a diff package to the user model.

- Easy access to services within the server logic.

- Easy integration of third-party plugins.

Why choose SugarSpace

- The platform is strictly focused on mobile products.

- Usually, the implementation of such a system for a particular game

requires at least a client developer, a dashboard developer and one

server developer.

- The implementation of such a system will take from one to two years.

- A universal system requires high expertise of all three developers,

while a system for a specific game excludes multiple use.

- The system cannot be used during development, debugging and testing.

- A high probability of writing a suboptimal system under the pressure

of the game development deadlines.

